Nanobodies as modulators of CXCR4/ACKR3/RTK function

Early stage researcher 2 (ESR2) project
Supervision: Dr. Raimond Heukers, Dr. Edward Dolk
Host: QVQ Holding BV

I- Project proposal:


  1. The development and characterization of multivalent anti-CXCR4/ACKR3/RTK nanobody constructs to modulate CXCR4/ACKR3 oligomers.
  2. Use multivalent Nbs for imaging of CXCR4/ACKR3 using site-directionally conjugated nanobodies

Nanobody constructs will be generated through genetic fusion, cloning and production in E.coli or S.cerevisiae. Produced nanobody constructs will be purified using affinity chromatography and gel filtration. Generated molecules will be assessed for production yields, integrity and functionality/potency in close collaboration with the VU University Amsterdam and University of Nottingham. This will involve a wide range of established techniques (UV-VIS spectrometry, SDS-PAGE, ELISA, ligand displacement and reporter gene assays and bioluminescence resonance energy transfer (BRET)). In addition, generated nanobody constructs will be turned into imaging agents via directional conjugation, which will be tested for imaging receptor complexes by using modalities.

Planned secondments:

Vrije Universiteit Amsterdam (Smit lab)

University of Nottingham (Hill lab)


II – Requirement candidate:

Required diploma: MSc in biology, chemistry, biochemistry, microbiology or molecular-, biomedical-, pharmaceutical- or related life sciences.

Required expertise: biochemistry and molecular biology (DNA and protein level).

Recommended expertise: molecular cloning, phage-display, protein production and purification, affinity chromatography, FPLC, (yeast) fermentation, site-directed conjugations, SDS-PAGE, ELISA, FACS, cell culture, cell based assays, fluorescence microscopy and working experience in industry.

Key publications:

  1. Van Hout A, Klarenbeek A, Bobkov V, Doijen J, Arimont M, Zhao C, Heukers R, Rimkunas R, de Graaf C, Verrips T, van der Woning B, de Haard H, Rucker JB, Vermeire K, Handel T, Van Loy T, Smit MJ, Schols D. 2018. CXCR4-targeting nanobodies differentially inhibit CXCR4 function and HIV entry.Biochem Pharmacol. 2018 Oct 17. pii: S0006-2952(18)30436-2.
  2. Bobkov V, Zarca AM, Van Hout A, Arimont M, Doijen J, Bialkowska M, Toffoli E, Klarenbeek A, van der Woning B, van der Vliet HJ, Van Loy T, de Haard H, Schols D, Heukers R, Smit MJ. 2018. Nanobody-Fc constructs targeting chemokine receptor CXCR4 potently inhibit signaling and CXCR4-mediated HIV-entry and induce antibody effector functions. Biochem Pharmacol. 2018 Oct 17. pii: S0006-2952(18)30435-0.
  3. Klarenbeek A, El Mazouari K, Desmyter A, Blanchetot C, Hultberg A, de Jonge N, Roovers RC, Cambillau C, Spinelli S, Del-Favero J, Verrips T, de Haard HJ, Achour I. 2015. Camelid Ig V genes reveal significant human homology not seen in therapeutic target genes, providing for a powerful therapeutic antibody platform. MAbs. 7(4):693-706. doi: 10.1080/19420862.2015.1046648.
  4. Gorlani A, de Haard H, Verrips T. 2012. Expression of VHHs in Saccharomyces cerevisiae. Methods Mol Biol. 911:277-86.
  5. Jähnichen S, Blanchetot C, Maussang D, Gonzalez-Pajuelo M, Chow KY, Bosch L, De Vrieze S, Serruys B, Ulrichts H, Vandevelde W, Saunders M, De Haard HJ, Schols D, Leurs R, Vanlandschoot P, Verrips T, Smit MJ. 2010. CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells. Proc Natl Acad Sci U S A. 23;107(47):20565-70.

For more information:
Dr. Raimond Heukers – or 



Apply here

Follow us on

Great way to finish the week off with some #FCS measurements of CXCR4-expressing HEK cells at @UoNLifeSci 🔬 #FluorescenceFriday

Hello everyone!
I am Noemi Karsai and I’m the next in our #ESR introduction series. I’m #ESR11 and I’m originally from Hungary, currently doing my PhD at @UoNLifeSci @COMPARE_UoBUoN, UK.

The transatlantic ECI GPCR symposium #ECIGPCR is about to start, we are ready!! Thanks to the organizers for their excellent job gathering almost 500 people across the globe! @cyclic_Andreas @NicoleAPerry1 @BenderSci @DesislavaNeshe1

Hello 🙂
I am here to continue the series in which all #ESRs are presenting themselves. I am Viviana Marolda and I am in my first year of PhD. I am #ESR13, originally from Italy, and currently, I am working as a PhD student in @CBMSO_CSIC_UAM, at Universidad Autonoma de Madrid.

Hey twitter!
I am @DehanComez. I am taking over the Oncornet account for a while to start a series of all #ESRs writing about themselves and their projects. I am #ESR5, originally from Turkey and right now I am working as a PhD student in @COMPARE_UoBUoN , @UniofNottingham , UK.

New review on #gpcr structural dynamics out in COSB. Great teamwork with the @JanaSelent group. Thanks to @Lundbeckfonden and @novonordiskfond

ONCORNET2.0 is the successor to #ONCORNET. You can see some of the work of ESRs from the first ONCORNET in this special issue of @MolPharmJournal from 2019, with reviews on #CXCR4 and #ACKR3 structure and function:

Hi everyone – we’re on Twitter! ONCORNET2.0 is a #MarieCurie ITN of 16 ESRs across Europe studying #chemokine #GPCRs #CXCR4 and #ACKR3 in cancer. Our projects cover molecular dynamics, medchem, #pharmacology through to translational work. Follow us for updates from our ESRs!

Load More

Contact details

Please contact us at:

ONCORNET Coordinator
VU University Amsterdam
The Netherlands